Аннотация. Физика углублённый уровень10-11 классы

ФГОС	Федеральный государственный образовательный стандарт основного общего образования
Название учебного предмета	Физика
Уровень обучения	базовый
Классы	10a, 11a
Количество	10- 170 часов (5 часов в неделю)
часов по	11- 170 часов (5 часов в неделю)
классам	Итого: 170 часов (34 недели).
Используемы	Физика. 10 класс: учеб. для общеобразоват. организаций: базовый и
е учебники	углубл. уровни / Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский; под ред. Н. А. Парфентьевой. 10-е изд., стер. — Москва: «Просвещение», 2023, 432 с. Физика. 11 класс. Базовый и углублённый уровни» авторов Г. Я. Мякишева, Б. Б. Буховцева, В. М. Чаругина под редакцией Н. А. Парфентьевой. «Просвещение», 2022, 436 с.

Цели и задачи учебного предмета

Основными целями изучения физики в общем образовании являются:

формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;

развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;

формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;

формирование умений объяснять явления с использованием физических знаний и научных доказательств;

формирование представлений о роли физики для развития других естественных наук, техники и технологий;

развитие представлений о возможных сферах будущей профессиональной деятельности, связанных с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;

формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;

освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи, в том числе задач инженерного характера;

понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;

овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;

создание условий для развития умений проектно-исследовательской, творческой деятельности;

развитие	интереса	к сферам	профессиональной
деятельности,	вязанной с ф	изикой.	

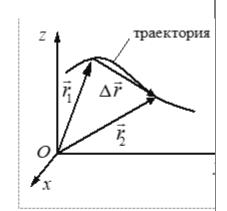
Проверяемые на ГИА элементы содержания (если предмет выносится на экзамен), 10 класс	
Проверяемые на ГИА требования (если предмет выносится на экзамен), 11 класс	МЕХАНИКА КИНЕМАТИКА
	Механическое движение. Относительность механического движения. Система отсчёта

Материальная точка.

Её радиус-вектор:

$$\vec{r}(t) = (x(t), y(t), z(t)),$$

траектория,


перемещение:

$$\begin{split} \Delta \vec{r} &= \vec{r}(t_2) - \vec{r}(t_1) = \vec{r}_2 - \vec{r}_1 = \\ &= (\Delta x, \Delta y, \Delta z), \end{split}$$

путь.

Сложение перемещений:

$$\Delta \vec{r}_1 = \Delta \vec{r}_2 + \Delta \vec{r}_0$$

Скорость материальной точки:

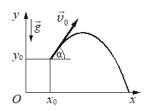
$$\vec{\upsilon} = \frac{\Delta \vec{r}}{\Delta t} \bigg|_{\Delta t \to 0} = \vec{r}_t' = \left(\upsilon_x, \upsilon_y, \upsilon_z\right),$$

$$\upsilon_x = \frac{\Delta x}{\Delta t}\Big|_{\Delta t \to 0} = x_t'$$
, аналогично $\upsilon_y = y_t'$, $\upsilon_z = z_t'$.

Сложение скоростей: $\vec{v}_1 = \vec{v}_2 + \vec{v}_0$.

Вычисление перемещения и пути материальной точки при прямолинейном движении вдоль оси x по графику зависимости $\upsilon_x(t)$

Ускорение материальной точки: $\vec{a}=\frac{\Delta\vec{\upsilon}}{\Delta t}\bigg _{\Delta t\to 0}=\vec{\upsilon}_t'=\left(a_x,a_y,a_z\right),$ $a_x=\frac{\Delta\upsilon_x}{\Delta t}\bigg _{\Delta t\to 0}=\left(\upsilon_x\right)_t', \text{ аналогично } a_y=\left(\upsilon_y\right)_t', \ a_z=\left(\upsilon_z\right)_t'.$
Равномерное прямолинейное движение: $x(t) = x_0 + v_{ox}t$ $v_x(t) - v_{0x} = const$


Равноускоренное прямолинейное движение:

$$x(t) = x_0 + \upsilon_{0x}t + \frac{a_x t^2}{2}$$
$$\upsilon_x(t) = \upsilon_{0x} + a_x t$$
$$a_x = \text{const}$$

$$v_{2x}^2 - v_{1x}^2 = 2a_x(x_2 - x_1)$$

При движении в одном направлении путь $S = \frac{\upsilon_1 + \upsilon_2}{2} \cdot t$

Свободное падение. Ускорение свободного падения.

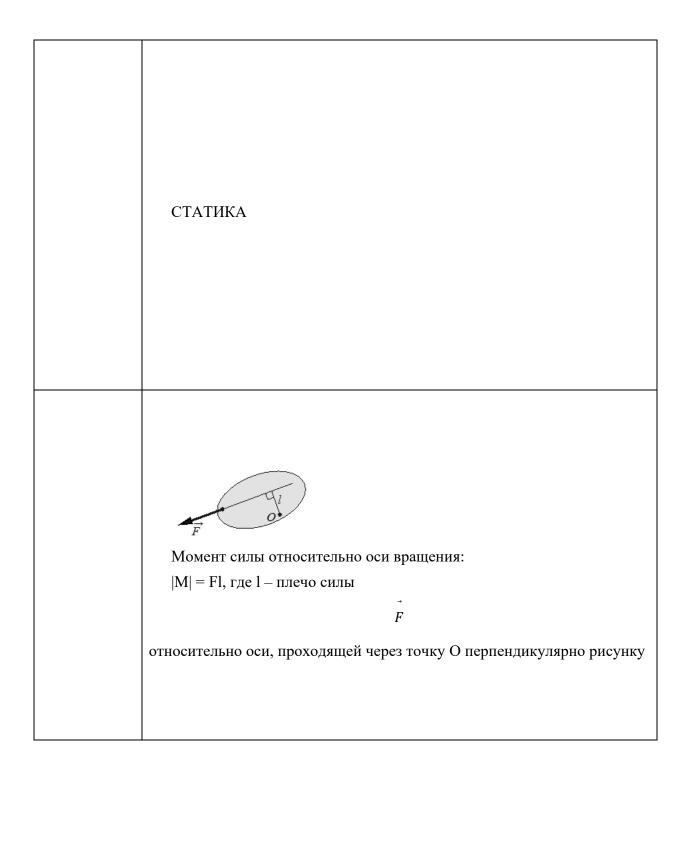
Движение тела, брошенного под углом α к горизонту:

$$\begin{cases} x(t) = x_0 + \upsilon_{0x}t = x_0 + \upsilon_0 \cos \alpha \cdot t \\ y(t) = y_0 + \upsilon_{0y}t + \frac{g_y t^2}{2} = y_0 + \upsilon_0 \sin \alpha \cdot t - \frac{gt^2}{2} \end{cases}$$

$$\begin{cases} v_x(t) = v_{0x} = v_0 \cos \alpha \\ v_y(t) = v_{0y} + g_y t = v_0 \sin \alpha - gt \end{cases}$$

$$\begin{cases} g_x = 0 \\ g_y = -g = \text{const} \end{cases}$$

Криволинейное движение. Движение материальной точки по окружности.
Угловая и линейная скорость точки:
$v = \omega R$
При равномерном движении точки по окружности
$\omega = \frac{2\pi}{T} = 2\pi v$
. Центростремительное ускорение точки:
$a_{\rm uc} = \frac{v^2}{R} = \omega^2 R$
. Полное ускорение материальной точки
Твёрдое тело. Поступательное и вращательное движение твёрдого тела


ДИНАМИКА
Инерциальные системы отсчёта. Первый закон Ньютона. Принцип относительности Галилея

Масса тела. Плотность вещества: $\rho = \frac{m}{V}$
Сила. Принцип суперпозиции сил: $\vec{F}_{\text{равнодейств}} = \vec{F}_1 + \vec{F}_2 + \dots$

Второй закон Ньютона: для материальной точки в ИСО
$\vec{F_1} = m\vec{a_1}$
;
$\Delta p = F \Delta t$
при $ec{F}=const$
$ec{F_{12}}$ $ec{F}_{21}$
Третий закон Ньютона для материальных точек:
$\vec{F_{12}} = -\vec{F_{21}}$

Закон всемирного тяготения: силы притяжения между точечными массами равны $F = G \frac{m_1 m_2}{R^2}$
. Сила тяжести. Центр тяжести тела. Зависимость силы тяжести от высоты h над поверхностью планеты радиусом R0: $mg = \frac{GMm}{(R_0+h)^2}$
Сила упругости. Закон Гука: $F_x = -kx$

Сила трения. Сухое трение. Сила трения скольжения: $F_{\rm Tp} = \mu N$
. Сила трения покоя: $F_{\rm Tp} \leq \mu N$
Коэффициент трения
Давление: $p = \frac{F_\perp}{S}$

Центр масс тела. Центр масс системы материальных точек: $\vec{r}_{\text{II,M.}} = \frac{\vec{m_1}\vec{r_1} + \vec{m_2}\vec{r_2} + \dots}{\vec{m_1} + \vec{m_2} + \dots}$ В однородном поле тяжести (g = const)центр масс тела совпадает с его центром тяжести Условия равновесия твёрдого тела в ИСО: $\begin{cases} M_1 + M_2 + \dots = 0 \\ \vec{F}_1 + \vec{F}_2 + \dots = 0 \end{cases}$

Закон Паскаля
Давление в жидкости, покоящейся в ИСО: $p = p_0 + \rho g h$

Закон Архимеда:
$\vec{F}_{ ext{Apx}} = \vec{-}P_{ ext{Bытесн}}$
, если тело и жидкость покоятся в ИСО, то
$F_{ m Apx} = pgV_{ m Bытесн}$
Условие плавания тел
ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

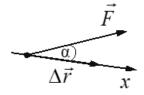
Импульс материальной точки: $\vec{p} = m\vec{v}$
Импульс системы тел: $\vec{p} = \vec{p}_1 + \vec{p}_2 + \dots$

Закон изменения и сохранения импульса:

в ИСО

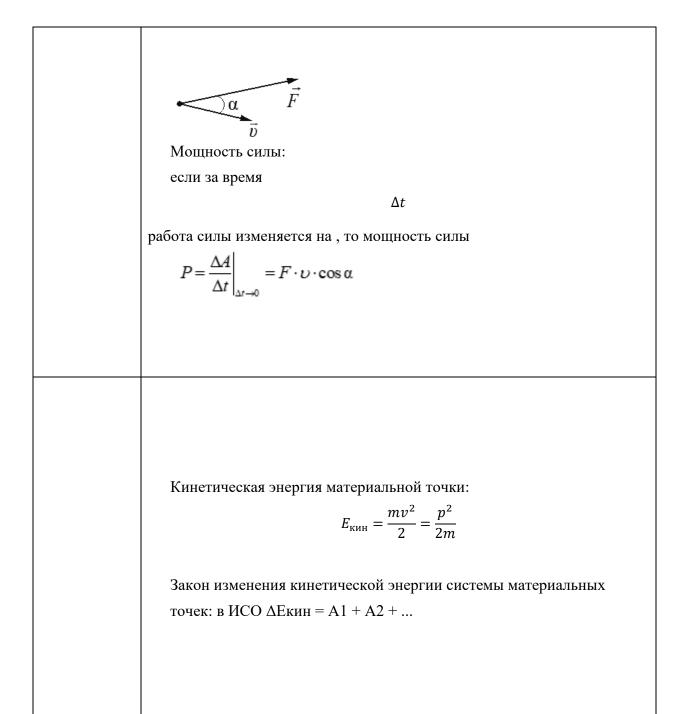
$$\vec{\Delta p} = \vec{\Delta (p_1 + p_2 + \dots)} = \vec{F_{1\text{внешн}}} \Delta t + \vec{F_{2\text{внешн}}} \Delta t + \dots$$

:


в ИСО, если

$$\vec{\Delta p} = \vec{\Delta (p_1 + p_2 + \dots)} = 0$$

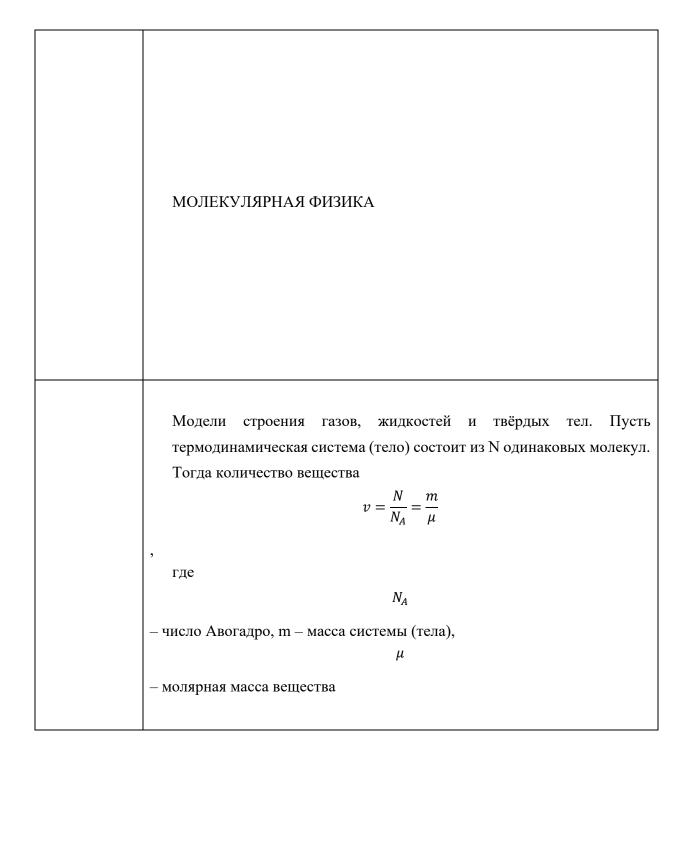
, если


$$\vec{F}_{1_{\mathrm{ВНешH}}} + \vec{F}_{2_{\mathrm{ВНешH}}} + \dots = 0$$

Реактивное движение

Работа силы на малом перемещении:

$$A = \left| \vec{F} \right| \cdot \left| \Delta \vec{r} \right| \cdot \cos \alpha = F_x \cdot \Delta x$$


Потенциальная энергия:
для потенциальных сил
$A_{12} = E_{1 ext{потенц}} - E_{2 ext{потенц}} = \Delta E_{ ext{потенц}}$
Потенциальная энергия материальной точки в однородном поле
тяжести:
$E_{ m norehu}=mgh$
Потенциальная энергия упруго деформированного тела:
$E_{\text{потенц}} = \frac{kx^2}{2}$
$E_{\text{потенц}} = \frac{1}{2}$
Закон изменения и сохранения механической энергии:
$\mathbf{E}_{\text{мех}} = \mathbf{E}_{\text{кин}} + \mathbf{E}_{\text{потенц}},$
в ИСО $\Delta E_{\text{мех}} = A_{\text{всех непотенц. сил}}$
в ИСО $\Delta E_{\text{мех}} = 0$, если $A_{\text{всех непотенц. сил}} = 0$

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Гармонические колебания материальной точки. Амплитуда и фаза колебаний. Кинематическое описание: $x(t) = A\sin(\omega t + \varphi_0),$ $v_x(t) = x'_t$ $a_x(t) = (v_x)'_t = -\omega^2 x(t) \Rightarrow a_x + \omega^2 x = 0$ где х - смещение из равновесия. Динамическое описание: $ma_x = -kx$, где $k = m\omega^2$. Это значит, что $F_{x}=-kx.$ Энергетическое описание (закон сохранения механической энергии): $\frac{mv^2}{2} + \frac{kx^2}{2} = \frac{mv_{max}^2}{2} = \frac{kA^2}{2} = \text{const}$

Период и частота колебаний: $T = \frac{2\pi}{\omega} = \frac{1}{\nu}$ Период малых свободных колебаний математического маятника: $T = 2\pi \sqrt{\frac{l}{g}}$ Период свободных колебаний пружинного маятника: $T = 2\pi \sqrt{\frac{m}{k}}$	Связь амплитуды колебаний смещения материальной точки с амплитудами колебаний её скорости и ускорения: $\upsilon_{\max} = \omega A, \ \ a_{\max} = \omega^2 A$
	$T = \frac{2\pi}{\omega} = \frac{1}{\nu}$ Период малых свободных колебаний математического маятника: $T = 2\pi \sqrt{\frac{I}{g}}$ Период свободных колебаний пружинного маятника:

Вынужденные колебания. Резонанс. Резонансная кривая
Поперечные и продольные волны. Скорость распространения и длина волны: $\lambda = vT = \frac{v}{v}$ Интерференция и дифракция волн

Звук. Скорость звука
МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

Тепловое движение атомов и молекул вещества
Взаимодействие частиц вещества

Диффузия. Броуновское движение
Модель идеального газа в МКТ

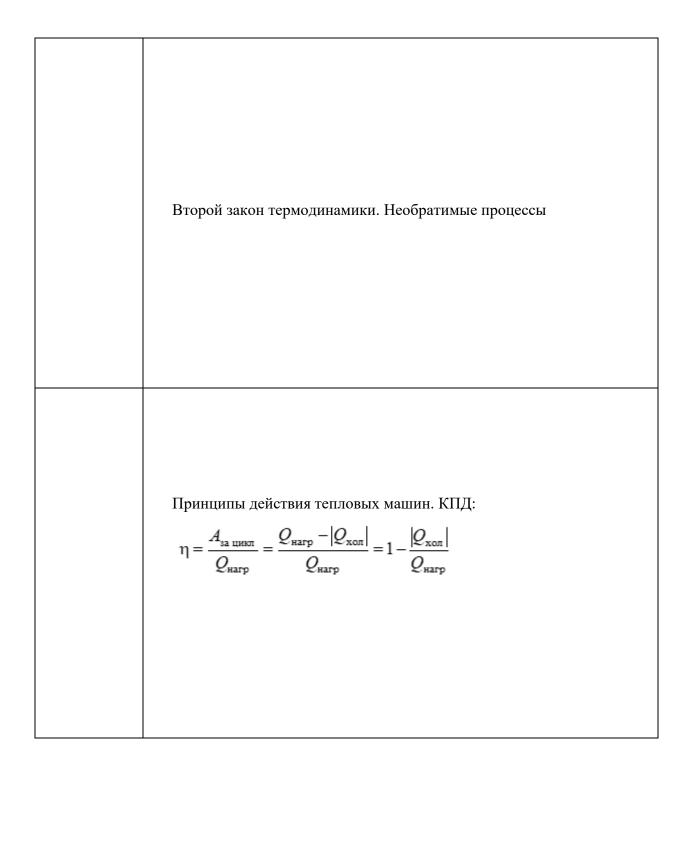
Связь между давлением и средней кинетической энергией
поступательного теплового движения молекул идеального газа
(основное уравнение МКТ):
$p = \frac{1}{3} m_0 n \overline{v^2} = \frac{2}{3} n \cdot \overline{\left(\frac{m_0 v^2}{2}\right)} = \frac{2}{3} n \cdot \overline{\varepsilon_{\text{nocr}}}$
где m 0 – масса одной молекулы, $n=rac{N}{V}$
$n-\overline{V}$
- концентрация молекул
Абсолютная температура: T = t +273K

Связь температуры газа со средней кинетической энергией поступательного теплового движения его молекул: $\overline{\varepsilon_{\text{nocr}}} = \overline{\left(\frac{m_0 v^2}{2}\right)} = \frac{3}{2} kT$
Уравнение p = nkT

Модель идеального газа в термодинамике:
,,
Уравнение Менделеева — Клапейрона Выражение для внутренней энергии
Уравнение Менделеева – Клапейрона (применимые фор записи):
$pV = \frac{m}{\mu}RT = \nu RT = NkT, p = \frac{\rho RT}{\mu}.$
Выражение для внутренней энергии одноатомного идеальн
газа (применимые формы записи):
$U = \frac{3}{2} vRT = \frac{3}{2} NkT = \frac{3}{2} \frac{m}{\mu} RT = vc_{v}T = \frac{3}{2} pV$
Закон Дальтона для давления смеси разреженных газов:
$p = p_1 + p_2 + \dots$

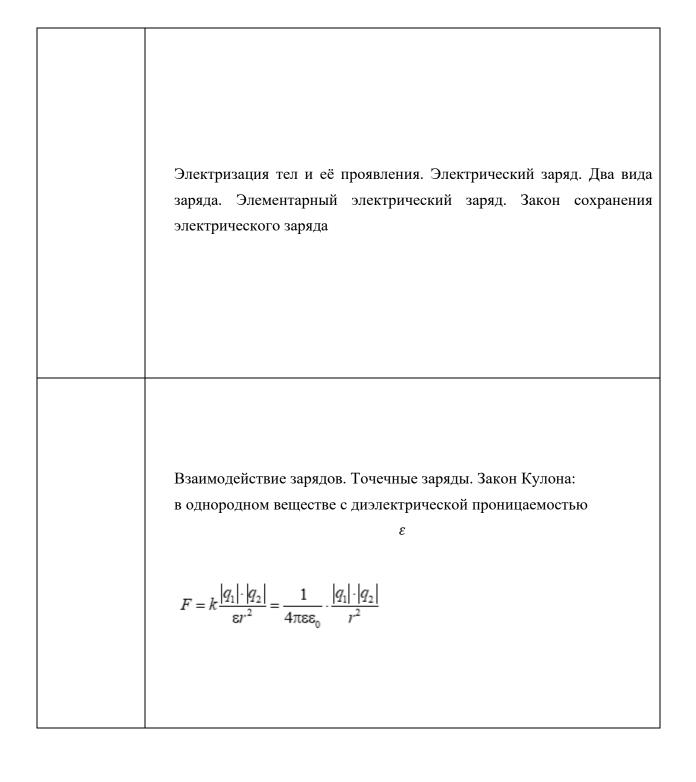
Изопроцессы в разреженном газе с постоянным числом молекул N (с
постоянным количеством вещества v):
изотерма ($T = const$): $pV = const$,
изохора ($V = const$):
$\frac{p}{T} = const$
изобара (p = const):
$\frac{V}{T} = const$
$\frac{1}{T} = const$
Графическое представление изопроцессов на pV-, pT- и VT-
диаграммах.
Объединенный газовый закон:
$\frac{pV}{T} = const$
T
для постоянного количества вещества v.
Насыщенные и ненасыщенные пары. Качественная зависимость
плотности и давления насыщенного пара от температуры, их
независимость от объёма насыщенного пара
пезавленмость от объема насыщенного нара

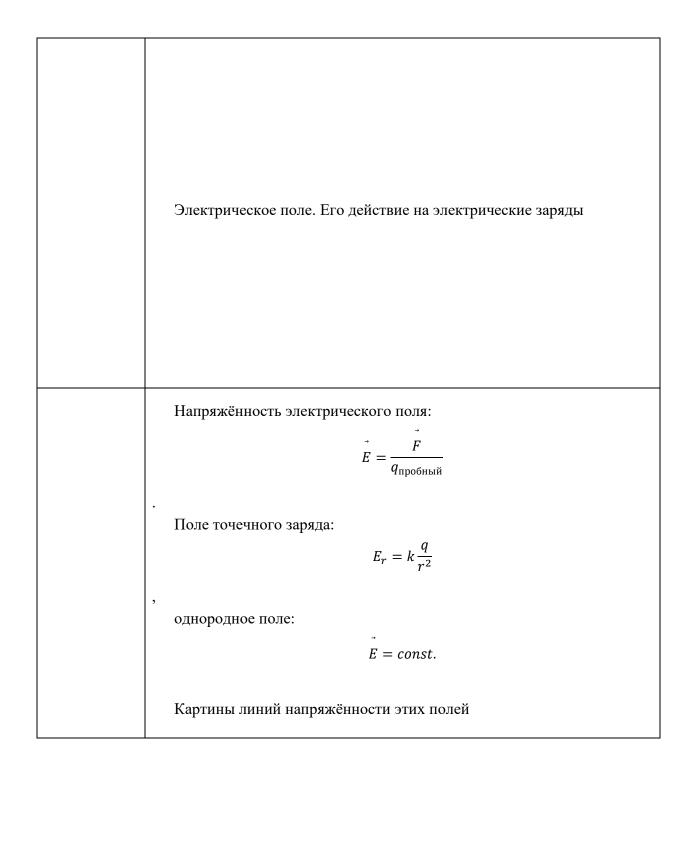
Влажность воздуха. Относительная влажность: $\phi = \frac{p_{\text{пара}}(T)}{p_{\text{насыщпара}}(T)} = \frac{\rho_{\text{пара}}(T)}{\rho_{\text{насыщпара}}(T)}$
Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости


Изменение агрегатных состояний вещества: плавление и кристаллизация
Преобразование энергии в фазовых переходах

ТЕРМОДИНАМИКА
Тепловое равновесие и температура

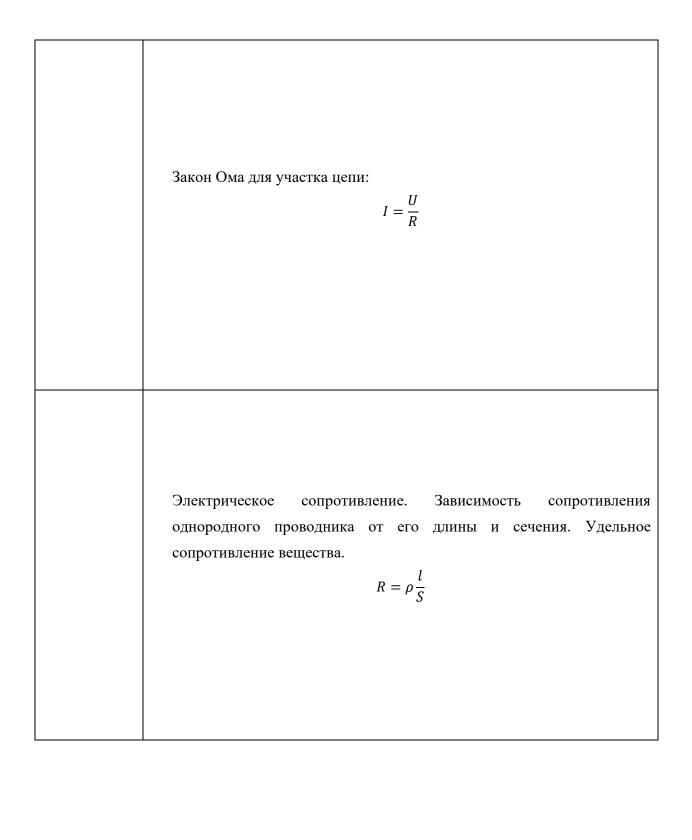
Внутренняя энергия
Теплопередача как способ изменения внутренней энергии без совершения работы. Конвекция, теплопроводность, излучение


Количество теплоты. Y дельная теплоёмкость вещества с: $Q = cm\Delta T$
Удельная теплота парообразования L: $Q=Lm$. Удельная теплота плавления λ : $Q=\lambda m$. Удельная теплота сгорания топлива q: $Q=qm$


Элементарная работа в термодинамике: $A=p\Delta V$
. Вычисление работы по графику процесса на pV-диаграмме
Первый закон термодинамики: $Q_{12} = \Delta U_{12} + A_{12} = (U_2 - U_1) + A_{12}$
Адиабата: $Q_{12} = 0 \Longrightarrow A_{12} = (U_1 - U_2) = \Delta U_{12}$

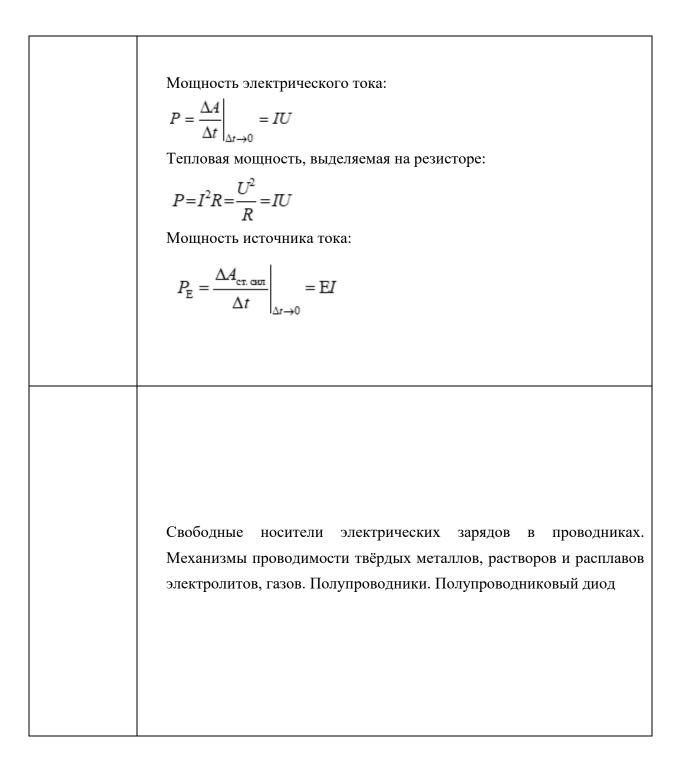
Максимальное значение КПД. Цикл Карно: $max \; \eta = \eta_{\rm Kapho} \; = \frac{T_{\rm Harp} \; - T_{\rm xon}}{T_{\rm Harp}} = 1 - \frac{T_{\rm xon}}{T_{\rm Harp}}$
Уравнение теплового баланса: $Q_1 + Q_2 + Q_3 + \ldots = 0$

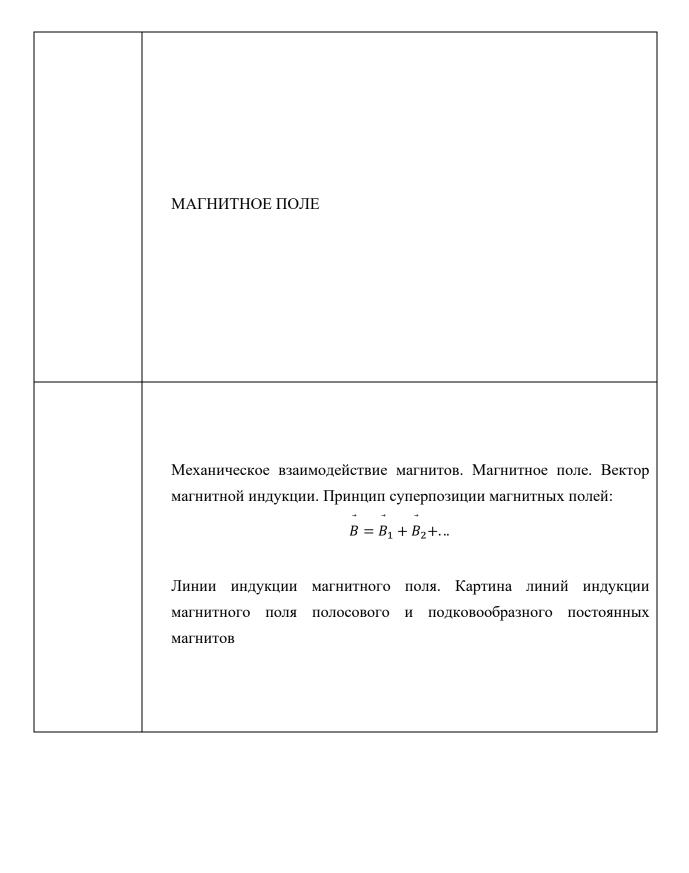
ЭЛЕКТРОДИНАМИКА
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ


Потенциальность электростатического поля
Потенциальность электростатического поля.
Разность потенциалов и напряжение:
$A_{12} = q(\phi_1 - \phi_2) = -q\Delta\phi = qU.$
Потенциальная энергия заряда в электростатическом поле:
$W = q\phi$
,
$A = -\Delta W$
$A = -\Delta W$
Потенциал электростатического поля:
$\phi = \frac{W}{q}$
, q
Связь напряжённости поля и разности потенциалов для однородного
электростатического поля: U = Ed
Принцип суперпозиции электрических полей:
$E = E_1 + E_2 + \dots, \phi = \phi_1 + \phi_2 + \dots$
$L - L_1 + L_2 + \dots, \psi - \psi_1 + \psi_2 + \dots$

Проводники в электростатическом поле. Условие равновесия зарядов: внутри проводника $E^\perp = 0$, внутри и на поверхности проводника $\phi = \mathrm{const}$
Диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества є

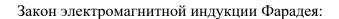
Конденсатор. Электроёмкость конденсатора: $C = \frac{q}{U} \label{eq:cond}$.
Электроёмкость плоского конденсатора: $C = \frac{\varepsilon \varepsilon_0 S}{d} = \varepsilon C_0$
Параллельное соединение конденсаторов: $q=q_1+q_2+\dots, U_1=U_2=\dots, C_{\text{паралл}}-C_1+C_2+\dots$
Последовательное соединение конденсаторов: $U=U_1+U_2,q_1=q_2=,\frac{1}{C_{\rm посл}}=\frac{1}{C_1}+\frac{1}{C_2}+$

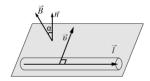

Энергия заряженного конденсатора: $W_c = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$
ЗАКОНЫ ПОСТОЯННОГО ТОКА


Сила тока: $I = \frac{\Delta q}{\Delta t} \bigg _{\Delta t \to 0}$ Постоянный ток: I = const Для постоянного тока q = It
Условия существования электрического тока. Напряжение U и ЭДС Е

Источники тока. ЭДС источника тока: $E = \frac{A_{\text{стороннихсил}}}{q}$
Внутреннее сопротивление источника тока
Закон Ома для полной (замкнутой) электрической цепи: $E = IR + Ir$, откуда $I = \frac{E}{Rr}$
E, r R

Пополнали ное соотниковие провении по
Параллельное соединение проводников:
I = I1 + I2 +, U1 = U2 =,
1 1 1
$\frac{1}{R_{\text{паралл}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
таралл т. т. г.
Последовательное соединение проводников:
U = U1 + U2 +, I1 = I2 =,
$R_{\text{посл}} = R_1 + R_2 + \dots$
Работа электрического тока: A = IUt.
Закон Джоуля – Ленца:
$Q = I^2 Rt$
$Q = I^{-RL}$
На поругатора
На резисторе
$R: Q = A = I^2 Rt = IUt = \frac{U^2}{R}t$
$R \cdot Q = R = 1$ $Rt = 10t = \frac{R}{R}t$




Опыт Эрстеда. Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током
Сила Ампера, её направление и величина: $F_A = IBlsin\alpha$, где α — угол между направлением проводника и вектором $\stackrel{\cdot}{B}$

Сила Лоренца, её направление и величина:
$F_{ m Jlop} = \mid q \mid vBsinlpha$
где α – угол между векторами
$\overset{ au}{v}$
И
B
. Движение заряженной частицы в однородном магнитном поле
. движение заряженной частицы в однородном магнитном поле
ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Поток вектора магнитной индукции: $\Phi = B_n S = BS cos \alpha$
Явление электромагнитной индукции. ЭДС индукции

$$E_t = -\frac{\Delta \Phi}{\Delta t}\Big|_{\Delta t \to 0} = -\Phi_t'$$

ЭДС индукции в прямом проводнике длиной l, движущемся со скоростью

 \vec{v}

$$(v \perp l)$$

в однородном магнитном поле В:

$$\mid E_i \mid = Blvcos\alpha$$

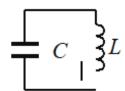
, где α – угол между вектором B и нормалью

n

к плоскости, в которой лежат векторы

ı luv

; если


ì

 \perp

B B
, И v
TO $\mid E_i \mid = Blv$
Правило Ленца

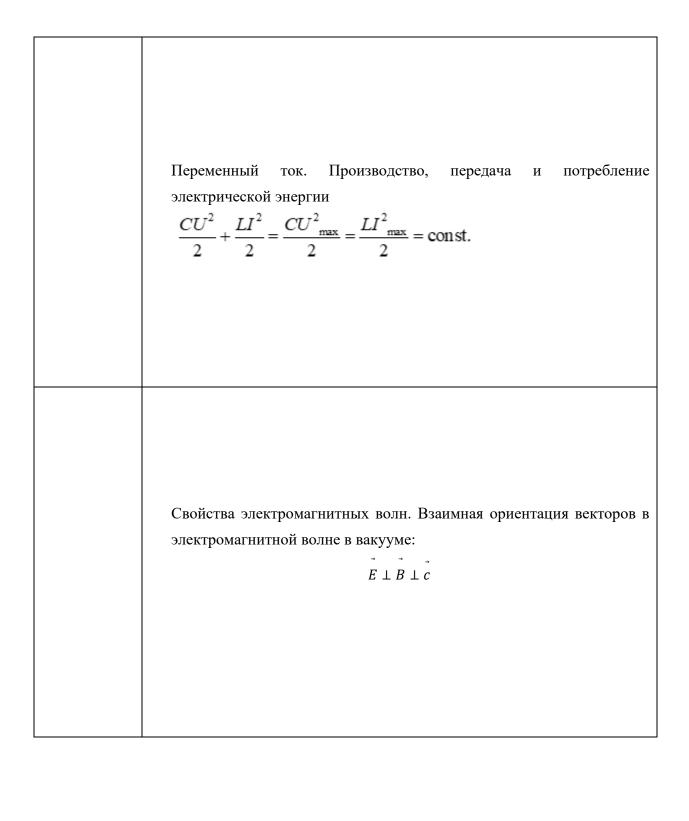
Индуктивность: $L = \frac{\Phi}{I}$, или $\Phi = \text{LI}$. Самоиндукция. ЭДС самоиндукции: $\mathbf{E}_{\text{si}} = -L\frac{\Delta I}{\Delta t}\bigg _{\Delta t \to 0} = -LI'_t$
Энергия магнитного поля катушки с током: $W_L = \frac{L I^2}{2}$

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре:

$$\begin{cases} q(t) = q_{\text{max}} \sin(\omega t + \varphi_0) \\ I(t) = q_t^{'} = \omega q_{\text{max}} \cos(\omega t + \varphi_0) = I_{\text{max}} \cos(\omega t + \varphi_0) \end{cases}$$

Формула Томсона:

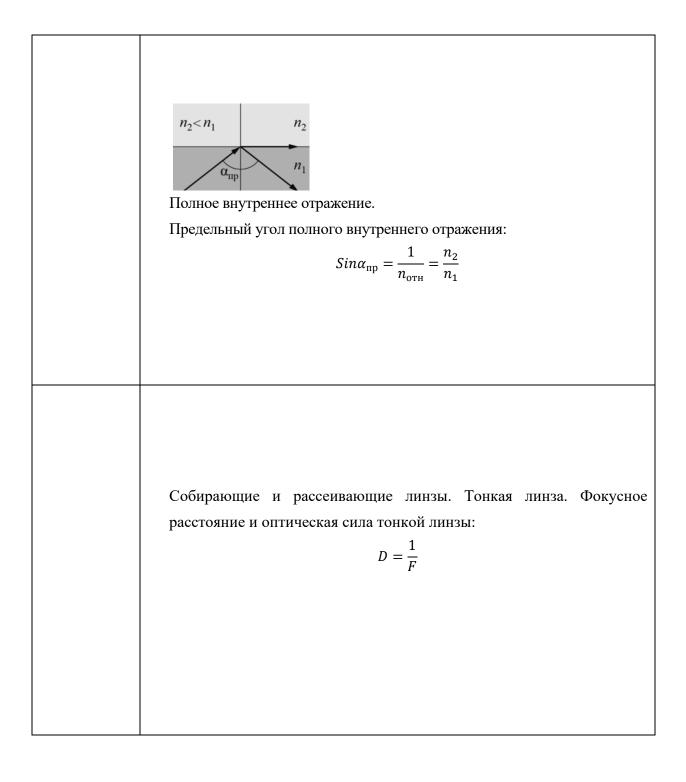
$$T = 2\pi\sqrt{LC}$$


, откуда

$$\omega = \frac{2\pi}{T} = \frac{1}{\sqrt{LC}}$$

Связь амплитуды заряда конденсатора с амплитудой силы тока при свободных электромагнитных колебаниях в идеальном колебательном контуре:

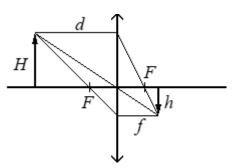
$$q_{\text{max}} = \frac{I_{\text{max}}}{\omega}$$


Закон сохранения энергии в идеальном колебательном контуре:
Вынужденные электромагнитные колебания. Резонанс

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту
ОПТИКА

Прямолинейное распространение света в однородной среде. Точечный источник. Луч света
Законы отражения света. $\alpha = \beta$

Построение изображений в плоском зеркале Законы преломления света. Преломление света: $n_1 sin \alpha = n_2 sin \beta$. Абсолютный показатель преломления: $n_{\rm a6c} = \frac{c}{v}$ Относительный показатель преломления: $n_{\text{oth}} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$ Ход лучей в призме. $v_1 = v_2$, $n_1 \lambda_1 = n_2 \lambda_2$ Соотношение частот и соотношение длин волн при переходе монохроматического света через границу раздела двух оптических сред:

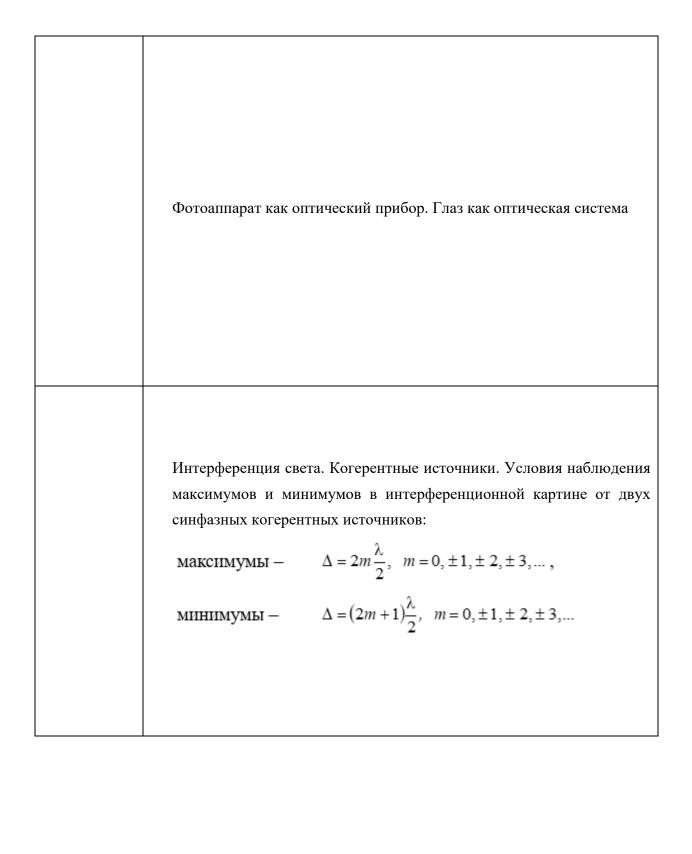


Формула тонкой линзы:

$$\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$$

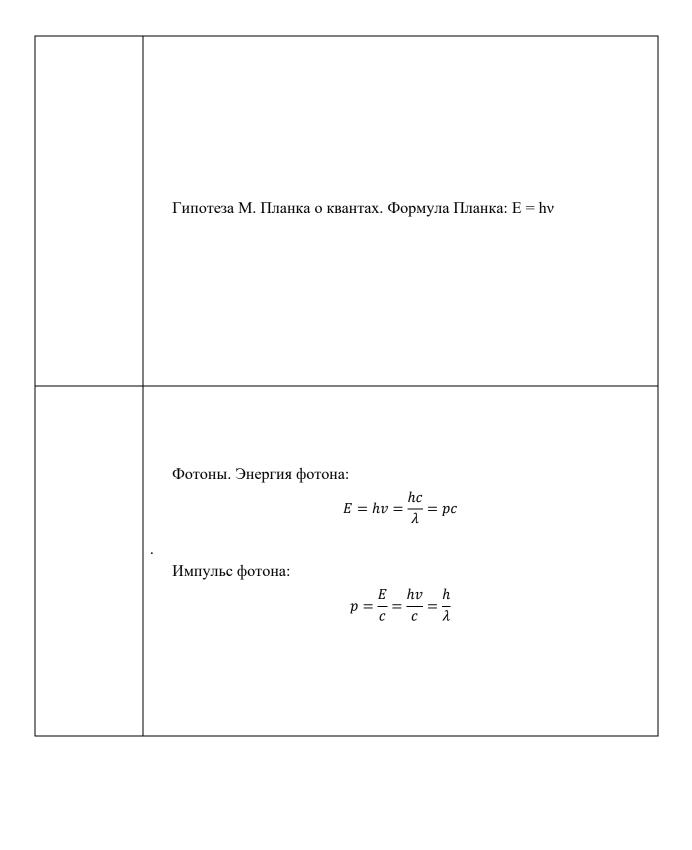
Увеличение, даваемое линзой:

$$\Gamma = \frac{h}{H} = \frac{|f|}{d}$$



В случае рассеивающей линзы:

$$D0 \Longrightarrow F = \frac{1}{D}0,$$


$$\Gamma = \frac{h}{H} = \frac{|f|}{d} 1$$

Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при нормальном падении монохроматического света с длиной волны λ на решётку с периодом d: $dsin\phi_m = m\lambda, m = 0, +/-1, +/-2, +/-3, \dots$
Дисперсия света

КВАНТОВАЯ ФИЗИКА
КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Фотоэффект. Опыты А.Г. Столетова. Законы фотоэффекта
Фотоэффект. Опыты А.г. Столетова. Законы фотоэффекта
Уравнение Эйнштейна для фотоэффекта:
$E_{ m \phiотонa} = A$ выхода + $E_{ m \kappa uh}$ тах,
где , $E_{ m \phi o t o h a} = h v = rac{h c}{\lambda},$
$A_{ ext{выхода}} = h v_{ ext{ iny Kp}} = rac{hc}{\lambda_{ ext{ iny Kp}}}$
$E_{ ext{ iny KHH}} max = rac{mv^2{}_{max}}{2} = eU_{ ext{ iny 3}}$ ап

Давление света. Давление света на полностью отражающую поверхность и на полностью поглощающую поверхность
ФИЗИКА АТОМА

Планетарная модель атома
Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой: $h \mathbf{v}_{mn} = \frac{hc}{\lambda_{mn}} = \left E_n - E_m \right $

Линейчатые спектры. Спектр уровней энергии атома водорода: $E_n = \frac{-13,6\mathrm{ 3B}}{n^2}, n=1,2,3,\;\dots$
ФИЗИКА АТОМНОГО ЯДРА

Нуклонная модель ядра Гейзенберга— Иваненко. Заряд ядра. Массовое число ядра. Изотопы
Радиоактивность.
Альфа-распад:
$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$
Бета-распад.
Электронный β-распад:
$_{\rm Z}^{\rm A}{\rm X} \rightarrow_{{\rm Z}+1}^{\rm A}{\rm Y} + {\scriptstyle 0\atop -1}e + \widetilde{\nu}_e$
Позитронный β-распад:
$_{Z}^{A}X \rightarrow_{Z-1}^{A}Y + _{+1}^{0}\tilde{e} + \nu_{e}$
Гамма-излучение

Закон радиоактивного распада: $N(t) = N_0 * 2^{\frac{-t}{T}}$. Пусть m — масса радиоактивного вещества. Тогда $m(t) = m_0 * 2^{\frac{-t}{T}}$
Ядерные реакции. Деление и синтез ядер